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In this paper, a new singular element is presented to evaluate stress intensity factors of V-shaped notches subjected 

to mixed-mode load. The proposed element takes into account special variation of displacements in the vicinity 

of the notch tip. The singularity at notch tip is variable unlike the crack problem where the displacements around 

the crack tip have variation of square root of r . In the proposed method, special basis functions considering the 

singularity order at notch tip are incorporated into the shape functions of the new element, and the singularity 

order is determined by the included angle of the notch. With the new element, more accurate displacement and 

stress fields in the neighborhood of the notch tip can be obtained, thus the stress intensity factors are computed 

more accurately. Accurate stress intensity factors are important for the V-notched structures to develop a fracture 

criterion. Numerical examples have demonstrated the accuracy and efficiency of the proposed method. 
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. Introduction 

Studying of V-notched structures is of great importance, since they

re stress raisers. The stress at the tip of a sharp notch is singular ac-

ording to the linear elastic theory. Thus the stresses evaluated at sin-

ular point have little reference value and the classical strength theories

re not suitable for V-notch problems. The fracture criterion for the V-

otched structures should be based on the stress intensity factors. 

The boundary element method (BEM) is an attractive method for

he V-notch problems due to accurate results for stresses and mesh re-

uction [1–15] . Rzasnicki et al. [16] applied BEM to analysis of single-

dge notch subjected to pure bending. Portela et al. [17] developed

 boundary element singularity subtraction technique to analyze the

harp notched plates. Niu et al. [18] proposed an interpolating matrix

ethod coupled with conventional BEM to model singular stress field in

-notched structures. Cheng et al. [19] analyzed the singularity order

f V-notch with angularly inhomogeneous elastic properties. In these

ethods, complicated mathematical deductions are used and they are

ot convenient to implement in ordinary BEM programs. 

In this paper, a new singular element with special shape functions is

roposed for evaluating the stress intensity factors of V-shaped notches.

he element with usual shape functions cannot accurately model the

isplacement field around the notch tip unless extremely fine meshes

re used. The singular element for crack problems is also not suitable

or analyzing the structure with V-shaped notches. This is because the

isplacements in the vicinity of the notch tip are of the variation of r 𝜆. r
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s the distance to the notch tip and 𝜆 is the eigenvalue (0.5 ≤ 𝜆≤ 1). The

rack tip singular element [20–23] can only model the variation of r 0.5 .

The stress singularity is mainly determined by the first eigenvalue 𝜆1 ,

specially for large included angle of the notch. In the proposed method,

he variation of r 𝜆1 is considered in the new singular element. 𝜆1 varies

ith respect to the notch angle. The special shape functions are derived

ccording to the notch angle. With the new singular element, more ac-

urate displacement and stress distributions in the neighborhood of the

otch tip can be obtained, thus the stress intensity factor is evaluated

ore accurately. Accurate stress intensity factor is important for the V-

otched structures to develop a fracture criterion. 

This paper is organized as follows. In Section 2 , the BEM is briefly de-

cribed. Section 3 introduces the new singular element in detail. Numer-

cal examples are given in Section 4 . The paper ends with conclusions

n Section 5 . 

. Boundary element method 

.1. Boundary integral equation 

The boundary integral equation for 2D elastostatic problem in an

sotropic, homogeneous medium is as follows: 

 𝑖𝑗 ( 𝑃 ) 𝑢 𝑗 ( 𝑃 ) = ∫Γ 𝑢 
∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑡 𝑗 ( 𝑄 ) 𝑑Γ( 𝑄 ) − ∫Γ 𝑡 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑢 𝑗 ( 𝑄 ) 𝑑Γ( 𝑄 ) (1)

here P and Q are the source and the field points, respectively. c ij ( P ) is a

oefficient matrix depending on the smoothness of the boundary Γ at the
pril 2018 
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Fig. 1. V-shaped notch. 

Fig. 2. Variations of 𝜆1 and 𝜆2 with respect to the notch angle 2 𝛽. 
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ource point P. u j and t j represent the displacement and traction com-

onents, respectively. 𝑢 ∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) and 𝑡 ∗ 

𝑖𝑗 
( 𝑃 , 𝑄 ) are the well-known Kelvin

undamental solutions and given by 

 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) = 

1 
8 𝜋𝐺(1 − 𝑣 ) 

[
(3 − 4 𝑣 ) 𝛿𝑖𝑗 ln 

1 
𝑟 
+ 𝑟 ,𝑖 𝑟 ,𝑗 

]
(2)

 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) = − 

1 
4 𝜋(1 − 𝑣 ) 𝑟 

{ 

𝜕𝑟 

𝜕𝑛 

[
(1 − 2 𝑣 ) 𝛿𝑖𝑗 + 2 𝑟 ,𝑖 𝑟 ,𝑗 

]
− (1 − 2 𝑣 )( 𝑟 ,𝑖 𝑛 𝑗 − 𝑟 ,𝑗 𝑛 𝑖 ) 

} 

(3)

here G and v are the shear modulus and the Poisson’s ratio, respec-

ively. r is the distance between the source and the field point. n i and n j 
re the components of the normal n . 

.2. Solution of the boundary integral equation 

Eq. (1) is discretized by n e elements. The discretization form of the

oundary integral equation is given by 

 𝑖𝑗 ( 𝑃 ) 𝑢 𝑗 ( 𝑃 ) = 

𝑛 𝑒 ∑
𝑒 =1 

{ 

𝑛 𝛼∑
𝛼=1 

𝑡 𝛼
𝑗 ∫Γ𝑒 𝑢 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑁 𝛼( 𝑄 ) 𝑑Γ( 𝑄 ) 

} 

− 

𝑛 𝑒 ∑
𝑒 =1 

{ 

𝑛 𝛼∑
𝛼=1 

𝑢 𝛼
𝑗 ∫Γ𝑒 𝑡 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑁 𝛼( 𝑄 ) 𝑑Γ( 𝑄 ) 

} 

(4)

here n 𝛼 is the number of the element nodes. N 𝛼 is the shape function

f the 𝛼th node of the element. 

The system of linear algebraic equations can be expressed in matrix

orm as 

𝐮 = 𝐆𝐭 (5)

here vectors u and t consist of all nodal displacements and tractions

n the boundary. Matrix H contains integrals involving 𝑡 ∗ 
𝑖𝑗 

, and matrix

 contains integrals involving 𝑢 ∗ 
𝑖𝑗 

. Rearranging Eq. (5) according to the

oundary conditions, the final system of linear equations can be ob-

ained. 

𝐱 = 𝐟 (6)

here A is the coefficient matrix. x is the vector containing the boundary

nknowns at the source nodes. f is the known vector on the right-hand

ide. 

. New singular element 

.1. Analysis of the singularity for the V-shaped notch 

The asymptotic stress fields around the notch tip are given by [24] 

𝑟 = 
𝑆 I √

2 𝜋( 𝑟 ) 1− 𝜆1 

{ 

− cos 
(
1 + 𝜆1 

)
𝜃 − 

(
3 − 𝜆1 

)
sin 

(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
sin 

(
1 − 𝜆1 

)
𝛼
cos 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 II √

2 𝜋( 𝑟 ) 1− 𝜆2 

{ 

sin 
(
1 + 𝜆2 

)
𝜃 + 

(
3 − 𝜆2 

)
sin 

(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
sin 

(
1 − 𝜆2 

)
𝛼
sin 

(
1 − 𝜆2 

)
𝜃

} 

(7)

𝜃 = 

𝑆 I √
2 𝜋( 𝑟 ) 1− 𝜆1 

{ 

cos 
(
1 + 𝜆1 

)
𝜃 − 

(
1 + 𝜆1 

)
sin 

(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
sin 

(
1 − 𝜆1 

)
𝛼
cos 

(
1 − 𝜆1 

)
𝜃

}

+ 

𝑆 II √
2 𝜋( 𝑟 ) 1− 𝜆2 

{ 

sin 
(
1 + 𝜆2 

)
𝜃 − 

sin 
(
1 + 𝜆2 

)
𝛼

sin 
(
1 − 𝜆2 

)
𝛼
cos 

(
1 − 𝜆2 

)
𝜃

} 

(8)

𝑟𝜃 = 
𝑆 I √

2 𝜋( 𝑟 ) 1− 𝜆1 

{ 

sin 
(
1 + 𝜆1 

)
𝜃 − 

sin 
(
1 + 𝜆1 

)
𝛼

sin 
(
1 − 𝜆1 

)
𝛼
sin 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 II √

2 𝜋( 𝑟 ) 1− 𝜆2 

{ 

cos 
(
1 + 𝜆2 

)
𝜃 − 

(
1 − 𝜆2 

)
sin 

(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
sin 

(
1 − 𝜆2 

)
𝛼
cos 

(
1 − 𝜆2 

)
𝜃

} 

(9)
162 
The asymptotic displacement fields are as follows [24] : 

 𝑟 = 
𝑆 𝐼 ( 𝑟 ) 𝜆1 √

2 𝜋𝐺 

{ 

− 1 
2 𝜆1 

cos 
(
1 + 𝜆1 

)
𝜃 + 

sin 
(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆1 

)
𝛼
cos 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 𝐼𝐼 ( 𝑟 ) 𝜆2 √

2 𝜋𝐺 

{ 

− 1 
2 𝜆2 

sin 
(
1 + 𝜆2 

)
𝜃 + 

sin 
(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆2 

)
𝛼
sin 

(
1 − 𝜆2 

)
𝜃

}
(10)

 𝜃 = 
𝑆 I ( 𝑟 ) 𝜆1 √
2 𝜋𝐺 

{ 

1 
2 𝜆1 

sin 
(
1 + 𝜆1 

)
𝜃 − 

𝑡 sin 
(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆1 

)
𝛼
sin 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 II ( 𝑟 ) 𝜆2 √

2 𝜋𝐺 

{ 

− 1 
2 𝜆2 

cos 
(
1 + 𝜆2 

)
𝜃 + 

𝑡 sin 
(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆2 

)
𝛼
cos 

(
1 − 𝜆2 

)
𝜃

}
(11)

where r, 𝜃 denotes a polar co-ordinate system centered at the notch tip

s shown in Fig. 1 ; S I , S II and t are constants; G is the shear modulus;

he included angle of the notch is 2 𝛽 and 𝛼 = 𝜋− 𝛽; eigenvalues 𝜆1 and

2 are determined by following characteristic equations: 

1 sin ( 2 𝛼) + sin 
(
2 𝜆1 𝛼

)
= 0 (12)

2 sin ( 2 𝛼) − sin 
(
2 𝜆2 𝛼

)
= 0 (13)

The stress intensity factors are defined as follows: 

 I = lim 

𝑟 →0 

√
2 𝜋( 𝑟 ) 1− 𝜆1 𝜎𝜃||𝜃=0 (14)

 II = lim 

𝑟 →0 

√
2 𝜋( 𝑟 ) 1− 𝜆2 𝜎𝑟𝜃||𝜃=0 (15)

𝜆1 and 𝜆2 vary with respect to the notch angle as shown in Fig. 2 .

rom this figure, we can see that the stress singularity is mainly de-

ermined by 𝜆1 , especially for large notch angle. This feature provides

onvenience for us to get the special shape functions of the new element.
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Fig. 3. Positions of the singular element. 

Fig. 4. Singular quadratic element. 
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Fig. 5. An inclined V-notched plate under uniaxial tension load. 

Fig. 6. Displacements along edge e obtained by different methods. 
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.2. Special shape functions of the new singular element 

In section 3.1 , we have analyzed the singularity of the stress. The

tress and displacement fields are mainly dependent on 𝜆1 . Therefore,

he variation of r 𝜆1 is considered in the new singular element to model

he special displacement field around the notch tip. The new singular

lements are collocated around the notch tip as shown in Fig. 4 . ( Fig. 3 ).

The deduction of the special shape functions for the new singular

lement is introduced in this part. We assume that the node ( 𝜉 = − 1) of

he singular quadratic element shown in Fig. 4 lies on notch tip. The

istance r is proportional to (1 + 𝜉). In order to get the variation of r 𝜆1 ,

he special shape function should be following form: 

 

𝑖 = 𝑎 𝑖 0 + 𝑎 𝑖 1 ( 1 + 𝜉) 𝜆1 + 𝑎 𝑖 2 ( 1 + 𝜉) 2 𝜆1 + 𝑎 𝑖 3 ( 1 + 𝜉) 3 𝜆1 (15)

here i = 0,…, 3; N 

i denotes the shape function of the i th node; 𝑎 𝑖 0 ∼ 𝑎 𝑖 3 
re unknown coefficients to be solved. 

The shape functions in Eq. (15) must satisfy the conditions: 

 

𝑖 ( 𝜉𝑗 ) = 𝛿𝑖𝑗 (16)

here i , j = 0,…, 3; 𝛿ij is Kronecker delta function; 𝜉j are the local node

oordinates of the new element as shown in Fig. 4 . 

Using Eq. (16) for each i in Eq. (15) , a set of 4 ×4 linear system of

quations is obtained. Solving this system of equations will yield the

oefficients 𝑎 𝑖 0 ∼ 𝑎 𝑖 3 . 

The special shape functions of other singular elements (linear, cu-

ic or higher order singular elements) can be obtained by the similar

ethod. The offsets d 1 and d 2 shown in Fig. 4 can be zero or non-zero,

hus the special shape functions of continuous, discontinuous and semi-

iscontinuous singular elements are derived in a uniform method. 

. Numerical examples 

.1. An inclined V-notched plate under uniaxial tension load 

An inclined V-notched plate under uniaxial tension load 𝜎 is con-

erned in this example. The bisector of the notch, included angle

 𝛽 = 𝜋/6, makes an angle 𝛼 = 𝜋/4 with the x global axis. Plane strain

ase with Young’s modulus E = 1 (in consistent units), Poisson’s ratio

 = 0.25, h / w = 2 and a / w = 0.5 are considered as shown in Fig. 5 . 

Fig. 6 shows the displacements U y along edge e around the notch tip.

Reference solution’ denotes the result by the FEM with 3,641,007 nodes.

Singular quadratic element’ and ‘Singular cubic element’ represent the

esults by the BEM with the proposed singular elements. ‘Traditional

uadratic element’ and ‘Traditional cubic element’ mean the results by

he BEM with traditional elements. Quadratic element with 287 nodes

nd cubic element with 280 nodes are used in the BEM, respectively.
163 
rom Fig. 6 , one can see that with the new element, more accurate dis-

lacement distributions around the notch tip can be obtained. 

The normalized stress intensity factors 𝐾 I ∕ 𝜎
√
𝜋𝑎 and 𝐾 II ∕ 𝜎

√
𝜋𝑎 by

ifferent methods with a series of nodes are shown in Figs. 7 and 8 ,

espectively. It can be seen that the stress intensity factors K I and K II 

re convergent as the number of mesh nodes increases. Except singular

uadratic element for K II , the results obtained by the proposed method

re closer to the convergence value, especially when fewer nodes are

sed. 

.2. Plate with a square hole under uniaxial tension load 

In this example, the plate containing a square hole under uniaxial

ension load 𝜎 is in plane strain state with Young’s modulus E = 1 (in

onsistent units), Poisson’s ratio v = 0.25, w = 4, h = 4, a = 2 and d = 1 as

hown in Fig. 9 . 

Fig. 10 shows the displacements U y along edge e around the notch

ip. ‘Reference solution’ denotes the result by the FEM with 4,004,000

odes. ‘Singular quadratic element’ and ‘Singular cubic element’ repre-

ent the results by the BEM with the proposed singular elements. ‘Tra-
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Fig. 7. Normalized stress intensity factor 𝐾 I ∕ 𝜎
√
𝜋𝑎 . 

Fig. 8. Normalized stress intensity factor 𝐾 II ∕ 𝜎
√
𝜋𝑎 . 

Fig. 9. Plate with a square hole under uniaxial tension load. 
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Fig. 10. Displacements along edge e obtained by different methods. 

Fig. 11. Normalized stress intensity factor 𝐾 I ∕ 𝜎
√
𝜋𝑎 . 

Fig. 12. Normalized stress intensity factor 𝐾 II ∕ 𝜎
√
𝜋𝑎 . 
itional quadratic element’ and ‘Traditional cubic element’ mean the

esults by the BEM with traditional elements. 168 and 152 nodes are

sed in the BEM with quadratic and cubic element, respectively. From

ig. 10 , we can see that with the new element, more accurate displace-

ent distributions around the notch tip can be obtained. 

The normalized stress intensity factors 𝐾 I ∕ 𝜎
√
𝜋𝑎 and 𝐾 II ∕ 𝜎

√
𝜋𝑎 by

ifferent methods with a series of nodes are shown in Figs. 11 and 12 ,

espectively. From these two figures it can be found that the stress in-

ensity factors K and K are convergent as the number of mesh nodes
I II 

164 
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Fig. 13. Thin-wall structure with many V-notches. 

Fig. 14. Displacements along edge e obtained by different methods. 
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Fig. 15. Von Mises stress by the proposed method with 3030 nodes. 

p  

a  

m  

t  

n  

s  

t

A

 

C

R

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

 

[  

 

[  

[  

[  

[  

[  

 

[  

[  

 

ncreases. Except singular quadratic element for K II , the results obtained

y the proposed method are closer to the convergence value, especially

hen fewer nodes are used. 

.3. Thin-wall structure with many V-notches 

In the last example, a thin-wall structure with many V-notches is

onsidered as shown in Fig. 13 . Plane strain case with Young’s modulus

 = 1 (in consistent units), Poisson’s ratio v = 0.25, uniaxial tension load

= 1, w = 120 and h = 95 are assumed. 

Fig. 14 shows the displacements U y along edge e. ‘Reference solution’

enotes the result by the FEM with 3,958,580 nodes. ‘Singular cubic ele-

ent’ represents the results by the BEM with the proposed singular cubic

lement. ‘Traditional cubic element’ means the results by the BEM with

raditional cubic element. 3030 nodes are used in these two methods.

rom Fig. 14 , we can see that with the new element, more accurate dis-

lacement distributions around the notch tip can be obtained. The von

ises stress by the proposed method is shown in Fig. 15 . This illustrates

hat the proposed method is able to solve the V-notch problem with

omplicated structure. 

. Conclusion 

A new singular element is proposed to evaluate stress intensity fac-

ors of V-shaped notches subjected to mixed-mode load in this paper.

he displacements in the vicinity of the notch tip have the variation of

 

𝜆. The traditional elements with usual shape functions do not lead to

ccurate solutions unless extremely fine meshes are used. In the pro-
165 
osed method, special basis functions considering the stress singularity

t notch tip are incorporated into the shape functions of the new ele-

ent. Numerical results have demonstrated that compared with tradi-

ional element, the displacements obtained by our method around the

otch tip is more accurate and higher level of accuracy for stress inten-

ity factors can be obtained. Accurate stress intensity factors are impor-

ant for the V-notched structures to develop a fracture criterion. 
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